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At the molecular level, it is acknowledged that a TCM formula is often a complex system, which challenges researchers to
fully understand its underlying pharmacological action. However, module detection technique developed from complex network
provides new insight into systematic investigation of the mode of action of a TCM formula from the molecule perspective. We
here proposed a computational approach integrating the module detection technique into a 2-class heterogeneous network (2-
HN) which models the complex pharmacological system of a TCM formula. This approach takes three steps: construction of a
2-HN, identification of primary pharmacological units, and pathway analysis. We employed this approach to study Shu-feng-jie-
du (SHU) formula, which aimed at discovering its molecular mechanism in defending against influenza infection. Actually, four
primary pharmacological units were identified from the 2-HN for SHU formula and further analysis revealed numbers of biological
pathways modulated by the four pharmacological units. 24 out of 40 enriched pathways that were ranked in top 10 corresponding
to each of the four pharmacological units were found to be involved in the process of influenza infection. Therefore, this approach
is capable of uncovering the mode of action underlying a TCM formula via module analysis.

1. Introduction

With the development and evolution for thousands of years,
Traditional Chinese Medicine (TCM) has become a sound
and complete theory based on distinct principles and founda-
tion from Western Medicine. TCM formulae, characterized
by abundant ingredients and vast associated targets, are
usually effective alternatives to western drugs for various
multifactorial disorders [1]. Influenced by the decreased
efficiency of new drug invention in recent years, the pattern
of drug design has to evolve from traditional “one drug, one
target” to “multicomponent, multitarget” drug discovery [2,
3]. Asmulticomponent agent with potential treatment effects,
TCM formula holds great promise to promote the process
of multitarget drug discovery based on molecular networks

[1, 4]. Thus, the investigation of molecular mechanism of
TCM formula plays an important role for better understand-
ing the essence of TCM therapies and multicomponent drug
discovery.

Currently, network-based approaches become crucial in
unveiling and interpreting the mode of action of a TCM
formula, with the accumulation of volume “omics” data
and the emerging of network pharmacology. So far, lots
of researchers have made great effort to acquire and col-
lect “omics” data through advanced in vivo and in vitro
techniques [5–7]. Among various “omics” data, interaction
knowledge such as compound-protein interaction (CPI) and
protein-protein interaction (PPI), as well as Gene Ontology
(GO) and pathway annotation, make it possible to describe
and analyze complex TCM formula in a holistic manner by
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using computational techniques. On the other hand, network
pharmacology brought new insight into drug discovery once
it was put forth [8]. The research interests of drug discovery
extend from simple disease-drug-gene relations to some new
spots such as promiscuity, synergistic effect, and functional
modules [9–11]. Consequently, the focus in pharmacology
research has shifted to the exploration of multicomponent
multitarget drugs [3, 12]. In fact, plenty of work investigated
the intrinsic regulating mechanism between many drugs and
numerous targets or synergistic effects of drug combinations
from a network perspective [13, 14]. Meanwhile, numerous
network-based methods have been developed to decipher
the pathological pattern underlying complex disorders and
uncover the mode of action of TCM herbs or formulae [15,
16].Moreover, network targetwas introduced as a new subject
for studying the pharmacological action of TCMherbs rather
than individual target or target set [17]. By using network-
based techniques, several TCM formulae such as Liu-wei-di-
huang have been particularly observed and studied in order
to discover the underlying mode of action at the molecular
level [18].Therefore, it is essential to investigate themolecular
mechanism of TCM formula using network-based methods,
especially in TCM pharmacology research [1].

Notably, module analysis technique based on network
model holds great promise to deal with most widely-used
TCM formulae of unexpected complexity at the molecular
level. In general, a TCM formula contains hundreds of
chemical constituents and may associate with thousands
of potential targets. It is a challenging task to identify
the effective bioactive compounds or even discover the
pharmacological action of numerous constituents of a TCM
formula [1]. Thus, it is of great importance to capture the
dominant modules of the molecular network representing a
TCM formula. Two common types of dominant modules we
are interested in are functional module and pharmacological
unit. A functional module usually represents a group of
genes or proteins sharing similar molecular functions, while
a pharmacological unit is a connected subnetwork in which
a set of compounds with similar physiochemical properties
modulate the activities of a group of function-similar gene
products. Typically, functional modules or pharmacological
units within the molecular network usually hold some sig-
nificant properties that are helpful in revealing the mode
of action of TCM formula. In fact, numbers of researchers
proposed diversemethods to detect functionalmodules from
interaction networks [11, 19, 20]. On the contrary, there
are few researches on identifying pharmacological units for
multicomponent drugs [18]. On the other hand, network
clustering algorithms, also known asmodule detectionmeth-
ods, developed from statistical physics are usually capable
of finding significant communities enriched with explicit
real-world meaning [21, 22]. As a matter of fact, several
algorithms accomplished important tasks in biological field
such as identifying protein complexes [23–25]. Additionally,
to identify functional modules or pharmacological units is
obviously another application of network clusteringmethods,
which is crucial in the investigation of pharmacological
action of TCM formula. Hence, applying classic module
detection algorithms to the molecular network of TCM

formula may contribute to better understanding of its mode
of action at the molecular level.

We here proposed a computational approach combin-
ing clustering algorithm with heterogeneous network to
investigate the molecular mechanism of TCM formula. This
approach takes a three-step procedure. At first, we con-
structed a 2-class heterogeneous network (2-HN) comprised
of herbal ingredients and associated targets for a TCM for-
mula under study.Then, a classicmodule detection algorithm
was applied to the 2-HN and we identified pharmacological
units from the 2-HN. Finally, we finely selected primary
pharmacological units and investigated them by pathway
analysis. This approach is apparently applicable for any TCM
formula. In this paper, we use Shu-feng-jie-du formula (SHU
formula) as an example to illustrate the procedure of the
approach.Thepathway analysis of four pharmacological units
identified from the 2-HN for SHU formula showed that 24
out of 40 enriched pathways that were ranked in top 10
corresponding to each of the four pharmacological units were
directly or indirectly involved in the process of influenza
development.

2. Methods

The novel approach is aimed at discovering the molecular
mechanism of TCM formula based on a heterogeneous
network together with a clustering algorithm.The procedure
of this approach mainly consists of three steps: the construc-
tion of a heterogeneous network, module detection from
the network, and the pathway analysis of selected primary
pharmacological units. In practice, we investigated the mode
of action of Shu-feng-jie-du formula by using this approach.

2.1. Construct Heterogeneous Network. Since our approach
takes advantage of the network to study a TCM formula,
we should firstly construct a heterogeneous network com-
prised of herbal ingredients and potential targets. At the
beginning, the specific composition of each herb in a given
TCM formula must be acquired. Typical ways to collect
the chemical ingredients of herbs include literature mining,
TCM database retrieval, and identification test. By diverse
means, we can collect the chemical constituents together
with their geometric structure for all herbs in the TCM
formula. Subsequently, the interaction data and potential
targets could be computed and retrieved, respectively, based
on the chemical knowledge for the studied TCM formula.

First of all, we acquire the interaction data between
herbal compounds by computational chemistry techniques.
Although various kinds of interaction knowledge is available,
compound pairs with similar chemical structures are widely
used in network-based pharmacology and drug discovery
research. The rationale is a well-known assumption that
similar compounds have similar properties [26]. In other
words, similar chemicals may share common targets and
are likely to perform synergistic action on complex diseases.
Thus, we evaluate compound pairs by calculating the pairwise
chemical similarity using the geometric structure previously
curated. In the field of cheminformatics, various methods



Evidence-Based Complementary and Alternative Medicine 3

were proposed to compute the structural similarity between
compounds. Notably, fingerprint-based similarity is practi-
cally preferable to MaximumCommon Subgraph (MCS) and
other methods in dealing with a large number of compound
pairs. We here employ Pybel, a Python wrapper for the
Openbabel toolkit, to calculate fingerprint-based chemical
similarity [27]. In the similarity measure, Tanimoto Coef-
ficient is used to evaluate the commonness of fingerprints
derived from two corresponding compounds as follows:

𝑠TC (𝑐1, 𝑐2) =
𝑐

𝑎 + 𝑏 − 𝑐

, (1)

where 𝑐
1
and 𝑐

2
are two compounds; 𝑎 and 𝑏 are bit

lengths of 𝑐
1
and 𝑐
2
fingerprints, respectively; and 𝑐 is the

number of common bits between 𝑐
1
and 𝑐
2
fingerprints. In

addition, a threshold 𝜃 is predefined to determine whether
two compounds are similar in structure. Compound pairs are
considered to be similar only if the pairwise similarity is equal
to or greater than the threshold. In the end, similar compound
pairs are collected as one of the sources for the construction
of the heterogeneous network.

Next, we retrieve potential targets from some authentic
databases according to the chemical constituents within
the TCM formula under study. When retrieving a specific
database such as DrugBank, CTD, and STITCH, we regard
the gene products that interact with herbal compounds as
potential targets. Note that only gene products of homosapi-
ens (human) will be taken into consideration. Once the
initial set of potential targets is achieved, the potential targets
should be carefully selected in order to avoid contingency.
It is understood that “hub” targets usually associate with
two or more chemicals due to the promiscuous property
of potential target in pharmacological space [9, 13]. So we
here define Promiscuity Index of a target simply by the
number of chemicals interacting with that target. Similarly,
the Promiscuity Index of a chemical can be measured by
the number of its binding targets. A threshold 𝛿 is specified
beforehand to eliminate peripheral targets curated for the
TCM formula. Gene products with Promiscuity Index no less
than 𝛿 are eventually selected into the target set for the TCM
formula. Note that the threshold 𝛿 is a small integer but is
greater than one, for instance, 2 or 3.

Then, we collect interaction relations between gene
products in the target set from some authentic databases.
Recent findings demonstrated that proteins always function
in cooperation with others rather than in isolation inside
or out of a cell [13]. That is, gene products tend to form
functional modules to participate in certain biological pro-
cesses or accomplish specific physiological functions. Lots of
databases, such as HPRD, BioGrid, IntAct, and DIP, gather
plenty of acknowledged protein-protein interactions (PPIs)
across diverse species. We usually select one database as the
source of PPI data due to the diverse reliability of PPIs in
different databases. Therefore, the interactome knowledge is
introduced to the heterogeneous network by retrieving PPIs
between gene products in the target set.

Finally, we construct an integrated network on the basis
of heterogeneous data acquired before. Since compounds
and gene products are present in this integrated network

at the same time, we consider such a network as a 2-
class heterogeneous network (2-HN). In brief, 2-class het-
erogeneous network (2-HN) is an abstract network model
involving two distinct groups of objects. As a matter of
fact, heterogeneous network, sometimes viewed asmultilayer
network, has been employed in recent work to study complex
drug-target interactions and predict disease genes [18, 28, 29].
In our case, the 2-HN describes a complex pharmacological
system relating the TCM formula under study to its treatable
diseases. From a local point of view, the 2-HN can be divided
into three subnetworks in chemical, pharmacological and
genomic space in terms of three types of links in the 2-HN
(Figure 1) [30]. In most cases, it is difficult to investigate and
analyze the 2-HN for the TCM formula due to its complexity.
Moreover, dense modules identified from the 2-HN may
reveal some important pathways enriched in a subset rather
than the whole set of genes related to the TCM formula.
Therefore, to identify the pharmacological units from the
2-HN by module detection methods is always necessary
to uncover the molecular mechanism of the TCM formula
(Figure 1).

2.2. Detect Significant Modules. Since the complex network
theory emerged, module detection has become one of the
major techniques to promote the application and develop-
ment of complex network. A great quantity of algorithms
have been devised and implemented to find significant
modules from connected networks [21–23]. Among various
classic methods, a well-known method, Girvan-Newman
algorithm, is capable to detect communities of a complex sys-
tem and identify community structure [22]. Girvan-Newman
algorithm is performed by iteratively removing edges with
highest betweenness from the original network. In this way,
the community structure could be viewed as a dendrogram.
We employ clusterMaker, an implementation of Girvan-
Newman algorithm in Cytoscape, to identify significant
modules within the 2-HN for the TCM formula [31, 32].

After the clustering partition is detected from the net-
work, we need a measure to quantify the significance of
identified modules. Notably, modularity is an outstanding
quality functionmeasuring the goodness of network partition
[33, 34]. Consequently, we use a measure similar to the
definition of modularity to evaluate whether a module is
significant or not in the original network. For an undirected
simple graph, the modularity of a module𝐶 can be expressed
as follows:

𝑄 (𝐶) =

𝑙
𝐶

𝑚

− (

𝑑
𝐶

2𝑚

)

2

, (2)

where 𝑙
𝐶
= ∑
𝑖𝑗∈𝐶

𝑤
𝑖𝑗
is the summation of weights of edges

in module 𝐶; 𝑑
𝐶

= ∑
𝑛∈𝐶

deg(𝑛) is the summation of
degrees of nodes in module 𝐶; and 𝑚 = (1/2)∑

𝑖,𝑗∈𝐺
𝑤
𝑖𝑗

is the size of the graph 𝐺. Obviously, a significant module
corresponds to a modularity larger than zero. A “good”
module always has a large modularity; otherwise, a small
modularity indicates the “poor” significance of a net-
work module. Moreover, according to the definition above,
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Figure 1: (a) A 2-class heterogeneous network (2-HN) modeling the complex system of a TCM formula and its molecular targets. A 2-
HN can be simply divided into three subnetworks in chemical, pharmacological, and genomic space in terms of the type of links. (b) A
pharmacological unit identified from the 2-HN in (a). A pharmacological unit includes a set of structure-similar herbal compounds and a
group of function-similar target genes, indicating that the herbal compounds modulate the activities of gene products.

the modularity of a clustering partition of a given network is
just the summation of modularities over all modules in the
partition.

2.3. Analyze Pharmacological Units. The significant mod-
ules identified from the 2-HN of the TCM formula need
to be examined before conducting further analysis. First,
modules should be excluded if they are only comprised
of compounds or gene products. Since compound-protein
interactions (CPIs) relate herbal ingredients to potential
targets, modules without any CPI make little contribution to
uncover the pharmacological action of herbal compounds in
the TCM formula. Second, modules with small modularity
close to zero should be eliminated. Generally, a module may
not be significant enough to be considered as a rational phar-
macological unit for the TCM formula if it has a fairly small
modularity. Third, modules should be paid less attention
if the ratio of preserved compound-protein interactions is
particularly low. The ratio of preserved CPIs is defined as the
number of CPIs in a module divided by the total number of

CPIs in the 2-HN.The ratio for a module 𝐶 can be expressed
as

𝑅 (𝐶) =
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, (3)

where 𝑐 is a compound and 𝑔 is a gene product; | ⋅ | is the
norm of a set, that is, the number of elements in the set. If the
ratio is low or few CPIs are present in a module, the module
is unlikely to represent the primary interacting pattern that
links herbal compounds and potential targets for the TCM
formula under study.After these examinations, the remaining
modules can be simply regarded as primary pharmacological
units responsible for the studied TCM formula taking effect
on complex diseases.

We investigate and analyze the primary pharmacological
units by pathway analysis. Pathway analysis always play an
essential role of discovering possible biological processes that
the genes in the input list participate in. A lot of databases
collect many curated pathways concerning metabolism, cel-
lular processes, and diseases, such as KEGG, BioCarta, Reac-
tome, GeneGo, and Ingenuity. Besides, Gene Ontology (GO),
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another kind of pathways, usually reveals the physiological
functions and cellular locations of a group of genes or gene
products. Thus, pathway and GO supply us with sufficient
knowledge about molecular regulation and gene function.
Other analysis methods, for instance, disease analysis using
gene overlapping and biomarkers, could provide new insight
to understand the underlying functions of the TCM formula.
In this paper, we use MetaDrug, a platform of systems
pharmacology and toxicity, to perform pathway analysis for
the identified primary pharmacological units [35]. Then, the
molecular mechanism underlying the studied TCM formula
could be uncovered through analyzing the enriched pathways
or GO terms for primary pharmacological units.

To illustrate the workflow of the approach in detail, we
apply the approach to an effective agent for influenza, Shu-
feng-jie-du formula. Instead of Shufeng-jie-du formula, we
use SHU formula for short in following sections. Following
the procedure of the approach, we can investigate the mode
of action underlying SHU formula.

3. Results and Discussion

3.1. 2-HN for SHU Formula. We firstly acquired the herb
composition of SHU formula and collected chemical con-
stituents within each herb. In fact, SHU formula mainly
consists of 8 herbs: Bai-Jiang-Cao (Herba Patriniae), Ban-
Lan-Gen (Radix Isatidis), Chai-Hu (Radix Bupleuri), Gan-
Cao (Radix Glycyrrhizae), Hu-Zhang (Rhizoma Polygoni
Cuspidati), Lian-Qiao (Fructus Forsythiae), Lu-Gen (Rhi-
zoma Phragmitis), and Ma-Bian-Cao (Herba Verbenae)
(Table 1). According to the herb composition, we collected
243 nonredundant chemical constituents for this formula. All
constituents of SHU formula were retrieved from the Chem-
istry Database founded by Shanghai Institute of Organic
Chemistry (http://www.organchem.csdb.cn). The 2D struc-
tures of herbal constituentswere downloaded fromPubChem
Compound database according to unique CAS Registry
Number. Then, we evaluated the similar compound pairs
based on the fingerprint-based Tanimoto similarity. The
threshold 𝜃 for similarity score was set to 0.7 as stated in
[27]. In this way, 562 pairs of compounds were collected
and considered to be similar because they had comparable
structural similarities to the threshold. In the next step,
we searched Comparative Toxicogenomics Database (CTD)
for potential targets interacting with herbal ingredients in
SHU formula [36]. The threshold 𝛿 for Promiscuity Index
of potential targets was set to 3. Namely, we only selected
gene products targeted by at least 3 herbal compounds, as
well as the interactions between those proteins and chemicals.
As a result, 238 potential targets were collected from CTD,
which associatedwith herbal compounds by 1101 interactions.
At last, we extracted acknowledged interactions between
238 gene products extracted before from BioGRID database
[37]. There were 718 nonredundant PPIs between the curated
potential targets. Based on these data, a 2-HN, an integrated
network for SHU formula, was constructed. Since we focused
on the largest connected component of the 2-HN for SHU

Table 1: Herb composition of Shu-feng-jie-du formula (SHU
formula).

English
translation Pharmaceutical name Simplified

Chinese script
Hu-Zhang Rhizoma Polygoni Cuspidati 虎杖

Lian-Qiao Fructus Forsythiae 连翘

Ban-Lan-Gen Radix Isatidis 板蓝根

Chai-Hu Radix Bupleuri 柴胡

Bai-Jiang-Cao Herba Patriniae 败酱草

Ma-Bian-Cao Herba Verbenae 马鞭草

Lu-Gen Rhizoma Phragmitis 芦根

Gan-Cao Radix Glycyrrhizae 甘草

formula, the resultant network contained 171 herbal com-
pounds and 238 potential targets after discarding small-size
components (Table 2).

The 2-HN of SHU formula has some interesting proper-
ties in topology. As shown in Table 2, two groups of nodes
in the 2-HN (rectangle for compounds and ellipse for gene
products) are connected by three types of links. It is obvious
that the pharmacological subnetwork is a bipartite, which is
comprised of all CPIs (Table 2). So the 2-HN for SHU formula
is beyond a bipartite by including compound interactions
andPPIs (Table 2).Thenetwork heterogeneity decreases from
2.531 of the pharmacological subnetwork to 1.588 of the 2-HN
for SHU formula.This is because compound interactions and
PPIs bring many extra links to the “nonhub” chemicals and
gene products, respectively [38]. In addition, the chemical
subnetwork has 34 connected components of which 17 are
isolated compounds (Table 2). Regardless of the isolated
nodes, each of the remaining connected components has
9.059 compounds in average. That is, herbal compounds in
SHU formula tend to form multiple components in terms of
similar structure. As for the genomic subnetwork, there are
57 connected components, among which 55 are comprised of
isolated proteins (Table 2). In fact, nearly all of the noniso-
lated proteins connect to a giant component with 181 nodes
and 717 links in the genomic subnetwork. It suggests that
the giant component determines the mode of action of SHU
formula to a large extent. Different from the phenomenon
in chemical subnetwork, target proteins of SHU formula
tend to form a single large component instead of multiple
components. Furthermore, only a small fraction (50 out of
171) of the involved herbal compounds (blue rectangles) take
direct or indirect actions on the 238 gene products in the 2-
HN (Table 2). Apart from the incompleteness of chemical-
protein knowledge, we could see that only limited number
of compounds have acknowledged therapeutic effects in SHU
formula. Among these 50 compounds, there are several “hub”
compounds associated with many targets, such as quercetin
and resveratrol, which may exhibit high activities against
influenza progression.

The “hub” compounds usually play an essential role to
achieve the excepted effect of SHU formula treating influenza.
We listed four “hub” herbal compounds in Table 3 and inves-
tigated their pharmacological functions at the same time.

http://www.organchem.csdb.cn
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Table 2: Topological properties of the 2-HN for SHU formula and its three subnetworks.

Property CSN PSN GSN 2-HN
Node Compounds 171 50 0 171

Proteins 0 238 238 238
Edge CCIs 481 0 0 481

CPIs 0 1101 0 1101
PPIs 0 0 718 718

Connected components 34 1 57 1
Isolated nodes 17 0 55 0

Clustering coefficient 0.662 0.0 0.198 0.414
Network density 0.033 0.027 0.025 0.028

Network heterogeneity 0.664 2.531 1.287 1.588
∗CCI is short for compound-compound interaction, CPI is compound-protein interaction, andPPI is protein-protein interaction. CSN represents the chemical
subnetwork of the 2-HN for SHU formula, PSN the pharmacological subnetwork, and GSN the genomic subnetwork.
∗All the topological properties were calculated using Cytoscape 2.8 [32].

Table 3: “Hub” herbal compounds identified from the pharmacological subnetwork of the 2-HN for SHU formula.

Name CAS RN PubChem
CID PI Action Reference

Quercetin 117-39-5 5280343 222
(i) Quercetin and rutin exhibit prooxidant effect in healthy
and antioxidant activity in influenza—infected animals. [39]

(ii) Quercetin and oseltamivir exhibited antivirus effect on
the Toll-like receptor 7 (TLR7) signaling pathway when
dendritic cells and macrophages were infected with H1N1.

[40]

Resveratrol 501-36-0 445154 218 Resveratrol inhibited the replication of influenza virus in
MDCK cells. [43]

Kaempferol 520-18-3 5280863 67

Kaempferol inhibited influenza A nucleoprotein
production in human lung epithelial (A549) cells infected
with the H5N1 virus strain A/Thailand/Kan-1/04 in
non-toxic concentrations.

[44]

Eugenol 97-53-0 3314 61
Eugenol could inhibit autophagy and influenza A virus
replication, inhibit the activation of ERK, p38MAPK and
IKK/NF-𝜅B signal pathways.

[45]

∗PI is Promiscuity Index of individual compound, that is, the number of binding targets in the 2-HN for SHU formula.

Two outstanding compounds are quercetin and resveratrol
with far larger Promiscuity Index (222 and 218, resp.) than
other compounds (the third largest is 67 for kaempferol).
Previous works revealed the underlying functions of these
four compounds in defending against influenza. For instance,
quercetin could relieve the oxidative stress caused by exper-
imental influenza virus infection in organisms like lungs
and liver [39]. Another work demonstrated that quercetin
together with oseltamivir exhibited antivirus effect on the
Toll-like receptor 7 (TLR7) signaling pathway when dendritic
cells and macrophages were infected with H1N1 [40]. Several
quercetin derivatives such as quercetin-3-rhamnoside and
isoquercetin also served as anti-influenza agents by inhibiting
the replication of influenza virus [41, 42]. Additionally,
resveratrol was found to inhibit the replication of influenza
virus in MDCK cells, which involved the blockade of the
nuclear-cytoplasmic translocation of viral ribonucleopro-
teins [43]. Moreover, kaempferol could inhibit the influenza
A nucleoprotein production in human lung epithelial cells
infected by the H5N1 virus [44] and eugenol could inhibit
autophagy and influenza A virus replication by suppressing

the activation of ERK, p38MAPK, and IKK/NF-𝜅B signal
pathways [45]. Therefore, these four “hub” herbal com-
pounds, characterized by large Promiscuity Index, indeed
take effect to defend against influenza.

Although the general effect of SHU formula could be
observed by studying the “hub” herbal compounds in the 2-
HN, we still neededmodule analysis to further investigate the
biological pathways that SHU formula actually influences and
regulates.We firstly identified primary pharmacological units
from the 2-HN for SHU formula and then investigated the
particular mode of action of SHU formula treating influenza.

3.2. Pharmacological Units from the 2-HN. Through detect-
ing modules using Girvan-Newman algorithm, 12 significant
modules were identified from the 2-HN for SHU formula.
However, not all themodules are fairly important and need to
be analyzed in detail. We selected primary pharmacological
units from the 12 modules according to three principles
explained before. As shown in Table 4, module 11 is only
comprised of compounds and thus excluded because it is
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Table 4: Metrics of detected modules from the 2-HN for SHU formula.

Module Compounds Proteins Valid Modularity Ratio of preserved CPIs
1 20 121 Yes 0.121375 0.257039
2 37 58 Yes 0.075361 0.15168
3 31 2 Yes 0.040522 0.003633
4 3 30 Yes 0.037876 0.023615
5 17 14 Yes 0.021214 0.014532
6 19 1 Yes 0.030336 0.001817
7 12 4 Yes 0.014417 0.003633
8 9 5 Yes 0.013261 0.004541
9 11 1 Yes 0.009457 0.000908
10 7 1 Yes 0.006564 0.000908
11 3 0 No 0.001104 0.0
12 2 1 Yes 0.000873 0.000908

not a valid pharmacological unit (including compounds and
gene products).We chose 0.02 as the threshold formodularity
and consequently five more modules, 7, 8, 9, 10, and 12, were
discarded due to the low significance in the original network.
The threshold for the ratio of preserved CPIs was set to 0.01
and another two modules, 3 and 6, were eliminated as they
included too few CPIs. In the end, four modules, 1, 2, 4, and
5, were selected and considered as primary pharmacological
units. From the topological perspective, modules 1, 2, 4, and
5 are highly connected in the background network of the 2-
HN characterized by relatively large modularities. Besides,
these four pharmacological units are of great importance to
represent the pharmacological essence of SHU formula due
to the large amount of preserved CPIs from the original
system. So we made great effort to investigate these four
pharmacological units by pathway analysis.

We analyzed the underlying biology by performing
enrichment analysis with pathways from GeneGo database.
For each primary pharmacological unit, we employed the
genes within the module as input gene list to search for
enriched pathways in GeneGo database. The top 10 enriched
pathways corresponding to each module were illustrated in
Figure 2. The pathways were sorted according to the 𝑃 value
whichmeasured the significance of a given pathway enriched
in the gene list of a pharmacological unit. The bioactive
compounds in every pharmacological unit potentially acting
on the enriched pathways were also highlighted in Figure 2.
The associated herbal compounds were ranked by Promis-
cuity Index, which was defined as the number of targets
connected to a given compound by the preserved CPIs in
an identified module (Materials and Methods). From the
viewpoint of pathway category, the bioactive compounds in
every primary pharmacological unit seemed to particularly
interfere with pathways from one or two specific categories.
For example, compounds in module 1 generally participate
in the processes of cell cycle (4 pathways) and development
(4 pathways); the highly enriched pathways of module 2
exhibit high relevance tometabolism (9 pathways), especially
the estradiol metabolism (3 pathways); module 4 mostly
influence the biological processes related to apoptosis and
survival (10 pathways); andmodule 5 interfere in the activities

of cell adhesion (4 pathways) and cytoskeleton remodeling (3
pathways) as well as immune response (3 pathways). Despite
of the redundancy of GeneGo pathways, we could see that
each of the four pharmacological units tends to regulate
relevant pathways from specific categories, which implies
that SHU formula carries out pharmacological efficacy by
simultaneously intervening pathological activities from dis-
tinct aspects at the pathway level. Since the module analysis
approach was applied to SHU formula generated explicit
results as exhibited in Figure 2, we should verify the reliability
of the prediction and evaluate the relevance of SHU formula
to influenza infection.

According to Figure 2, we could find that compounds
in all four pharmacological units had potential effects on
influenza infection. At first, 40 enriched pathways in Figure 2
were regulated to some extent by corresponding herbal
compounds in each module, which can be explained by the
acknowledged regulatory relations between compounds and
pathway components from CTD. For example, resveratrol
influences the EGFR signaling pathway through binding to
EGFR protein and thus decreasing the phosphorylation of
EGFR protein [46]. However, since not all enriched pathways
were involved in the activities of influenza infection, we
particularly focused on those related to influenza progression
and the regulatory relations between SHU formula and
those pathways. As shown in Table 5, 24 of the 40 enriched
pathways were found to directly or indirectly participate
in the processes of influenza virus invasion, production,
proliferation, and transition, and to account for the influenza-
induced syndromes as well, such as inflammation. Here we
primarily studied the specific action of herbal compounds in
each pharmacological unit on 24 influenza-related pathways,
while the participation of these pathways in the progression
of influenza would be analyzed in following section. For
module 1, resveratrol togetherwith other compounds blocked
the G1/S-phase transition [47], inhibited the EGFR/HER2
signaling pathway [46], and regulated the PTEN/AKT path-
way [46]. Quercetin and kaempferol together with other
bioactive compounds in module 2 showed inhibitory effect
on the in vitro hepatic metabolism of 17𝛽-estradiol [48] and
on the hydroxylation of benzo[a]pyrene [49]. Additionally,
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Figure 2: (a), (b), (c), and (d) Top 10 enriched pathways and associated herbal compounds corresponding tomodule 1, 2, 4, and 5, respectively.
The herbal compounds are ranked by Promiscuity Index (PI), which is defined as the number of targets connected to a given compound by
the preserved CPIs in a detected module. Note that only compounds with PI greater than zero are listed in this figure.The enriched pathways
are ranked by the 𝑃 values calculated in MetaDrug. The circled numbers in brackets after pathway name indicate the major category that
pathway belongs to. For example, “ESR1 regulation of G1/S transition” belongs to category 1 and 3, that is, cell cycle and development. The
category knowledge is curated from the classification tree of GeneGo pathways in MetaDrug. All pathways in this figure are significant with
𝑃 values lower than 0.001.

quercetin also suppressed COX-2 expression and PGE2
production [50]. Herbal compounds in module 4 such as
adenosine, phenol, and betulinic acid tended to inhibit IL-
12 and TNF-𝛼 production [51], downregulate the expression
of IAP2 [52], and trigger CD95 (APO-1/Fas)- and p53-
independent apoptosis [53]. Compounds in module 5 like
catechin could inhibit the endotoxin-inducedHMGB1 release
[54] and block the TLR signaling pathway [55]. Moreover,
the remaining 16 pathways were also likely to correlate with
influenza infection, although there has been no literature
support for those pathways so far. In brief, 24 influenza-
related pathways elucidated the potential effects of SHU
formula against influenza infection from diverse aspects at
the pathway level.

Moreover, by exploring the development of influenza, we
could explicitly see how the enriched pathways modulated
by bioactive components in SHU formula led human phys-
iological system to a serious disease state. These pathways
either promoted the production and replication of viral
RNAs or proteins or induced host immune response and
inflammation. The participation of these pathways in the
pathological process of influenza infection, discussed in

the next section, explained how SHU formula treated against
influenza infection by intervening various pathways in differ-
ent stages and cellular locations.

3.3. SHU Formula Treating Influenza. When Influenza A
virus (H1N1) enters host cells, it induces host cell cycle
arrest in G(0)/G(1) phase and creates favorable conditions
for viral replication. The nonstructural protein 1 (NS1) of
influenza A virus induces G(0)/G(1) cell cycle arrest mainly
through interfering with the RhoA/pRb signaling pathway,
thus providing beneficial conditions for viral protein replica-
tion and accumulation [56]. The concentration and activity
of RhoA protein is pivotal for G(1)/S phase transition, which
were decreased with overexpressing NS1 [56]. When viral
macromolecules interact with host proteins. High-mobility-
group box (HMGB) proteins bind to the nucleoprotein
(NP) component of viral ribonucleoproteins (vRNPs) in the
absence of viral RNA, and HMGB1 protein plays a significant
role in intranuclear replication of influenza viruses [74].
PI3K/Akt signaling pathway is activated by NS1 protein and
inhibition of the PI3K/Akt pathway is an anti-influenza
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Table 5: Literature-verified pathways related to influenza infection corresponding to four pharmacological units.

Module Enriched pathways 𝑃-value Rank Reference

1

Regulation of G1/S transition (part 2) 4.137𝑒 − 24 1
[56]Influence of Ras and Rho proteins on G1/S Transition 2.156𝑒 − 23 2

EGFR signaling pathway 2.803𝑒 − 20 3 [57]
TGF-beta-dependent induction of EMT via MAPK 2.603𝑒 − 18 5 [58]
AKT signaling 5.258𝑒 − 16 7 [59]
Brca1 as a transcription regulator 1.710𝑒 − 15 9 [60]
Histamine H1 receptor signaling in immune response 3.503𝑒 − 15 10 [61]

2

Estradiol metabolism (human version) 4.213𝑒 − 9 5
[62]Estradiol metabolism 1.293𝑒 − 7 7

Estradiol metabolism (rodent version) 1.832𝑒 − 7 8
Benzo[a]pyrene metabolism 4.024𝑒 − 7 9 [63]
PGE2 signaling in immune response 6.146𝑒 − 7 10 [64]

4

Apoptotic TNF-family pathways 8.253𝑒 − 32 1 [65]
Role of IAP-proteins in apoptosis 6.132𝑒 − 27 2 [66]
FAS signaling cascades 6.374𝑒 − 20 4 [67]
Inhibition of angiogenesis by PEDF 2.792𝑒 − 13 8 [68]
Granzyme B signaling 3.712𝑒 − 13 9 [69]
Ceramides signaling pathway 2.652𝑒 − 12 10 [70]

5

TGF, WNT, and cytoskeletal remodeling 3.303𝑒 − 9 1 [71]
Chemokines and adhesion 1.360𝑒 − 7 2 [72]
Cytoskeleton remodeling 1.502𝑒 − 7 3 [73]
HMGB1/RAGE signaling pathway 5.901𝑒 − 7 5 [74]
HSP60 and HSP70/TLR signaling pathway 4.805𝑒 − 5 9 [75]
MIF-mediated glucocorticoid regulation 3.981𝑒 − 4 10 [76]

∗The rank is the order of ascending 𝑃 values of enriched pathways corresponding to each primary pharmacological unit.

strategy which is still in an early phase of preclinical devel-
opment [59]. In addition, influenza virus infection activates
three distinct MAPKs, ERK, p38 MAPK, and JNK, to partic-
ipate to various extents in the induction of PGE2 synthesis
from arachidonic acid in human bronchial epithelial cells
[64]. Metabolized benzo[a]pyrene (BaP) reduced viral IFN
induction by approximately 80% assessed in LLC-MK2 cell
[63].

Airway epitheliumplay an important role in host immune
response. Many diverse viruses target a polarized epithelial
monolayer during host invasion. The polarized epithelium
restrict the movement of pathogens across the mucosa. This
regulation can be attributed to the presence of a junctional
complex between adjacent cells and to an intricate network
of actin filaments [73]. Virus-infected alveolar epithelium
regulate CCL2/CCR2-dependent monocyte transepithelial
migration dependent on both classical beta(1) and beta(2)
integrins but also junctional adhesion molecule pathways
during influenza infection [72]. The epithelial response to
inhaled pathogens in airway epithelium that deposit on the
airway epithelial surface includes EGFR signaling cascades
[57].

Influenza virus invasion is associated with host immunity
and inflammation. Inflammatory cytokines such as TNF-
𝛼, IFN-𝛾, and ET-1 may trigger the occurrence of AMI
[65]. Toll-like receptors (TLRs) play an important role in
early, innate viral inhibition in naturally occurring influenza

with inflammatory cytokine responses [75]. Histaminemedi-
ates the acute inflammatory and immediate hypersensitivity
responses, and it has also been demonstrated to affect
chronic inflammation and regulate several essential events
in the immune response [61]. Type V collagen [col(V)]
overexpression and IL-17-mediated anti-col(V) immunity are
key contributors to obliterative bronchiolitis pathogenesis.
IL-17 is shown to induce EMT, TGF-𝛽 mRNA expression,
and SMAD3 activation, whereas downregulating SMAD7
expression in vitro [58]. Macrophage migration inhibitory
factor (MIF) is involved in inflammatory responses to H5N1
influenza virus infections by induction of pulmonary inflam-
matory cytokines and chemokines [76]. BRCA1 regulates
inflammation-induced endothelial cell function and limits
endothelial cell apoptosis and dysfunction [60]. Pigment
epithelial-derived factor (PEDF) suppresses inflammation by
inhibiting lipopolysaccharide-driven macrophage activation
in vitro and in vivo [68]. GzmB deficiency associated with
pathology, morbidity, andmortality results in exacerbation of
lymphocytic inflammation during bleomycin-induced acute
lung injury [69]. Ceramide is the core of sphingolipid
metabolism, and phosphorylation of ceramide by ceramide
kinase gives rise to ceramide-1-phosphatewhich has also been
shown to participate in inflammation [70].

Besides immune responses in host defence, influenza A
virus infection induces endoplasmic reticulum stress, Fas-
dependent apoptosis, and TGF-𝛽 production in a variety of
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Figure 3: An illustration of SHU formula intervening the influenza development through multiple pathways. The blue rectangle is bioactive
herbal compounds derived from SHU formula. The ellipse represents biological pathways that the compounds modulate. The red ones are
literature-verified pathways that participate in the process of influenza infection, while the gray ones are not verified yet. A thick edge
indicates many common hits (pathway components that are also associated targets of herbal compounds) between two pathways or between
a compound and a pathway.

cells [71]. Inhibitor of apoptosis proteins (IAPs) influence
ubiquitin-dependent pathways thatmodulate innate immune
signaling via activation of nuclear factor 𝜅B (NF-𝜅B) [66].
Multiple influenza virus factors have been identified that can
activate intrinsic or extrinsic apoptotic induction pathways.
dsRNA, NS1, NA, and PB1-F2 are influenza virus inducers
of apoptosis. dsRNA and NA act via an extrinsic mecha-
nism involving proapoptotic host-defensemolecules: PKR by
induction of Fas-Fas ligand and NA by activation of TGF-
beta. PB1-F2 act intrinsically by localization and interaction
with the mitochondrial-dependent apoptotic pathway [67].

The symptoms of influenza virus infection are related
to gender. Females suffer a worse outcome from influenza
A virus infection than males, which can be reversed by
administration of estradiol to females and reflects differences
in the induction of proinflammatory responses [62].

3.4. Discussion. According to the results of pathway analysis,
we built a simple network to illustrate the pharmacological
action of SHU formula against influenza infection (Figure 3).
This networkwas constructed based onmodule 1 identified by
Girvan-Newman algorithm from the 2-HN of SHU formula.
The edge connecting a compound and a pathway indicates
the cooccurrence of associated targets of the compound and
pathway components, while the edge between two pathways
represents the commonness of hits (pathway components
that are also associated targets of herbal compounds) cor-
responding to both pathways. As shown in Figure 3, 8

bioactive compounds of module 1 modulate 10 enriched
pathways related to influenza infection. From the perspective
of topology, resveratrol is the most important to regulate
the involved pathways compared to other compounds. It
is obvious that resveratrol is connected to all 10 pathways
through strong links, indicating that resveratrol mediates
multiple gene products in these pathways. Besides, resveratrol
is found to modulate the 𝐺1/𝑆-phase transition (𝑃 value
4.1𝑒 − 24) [47], the EGFR/HER2 signaling pathway (𝑃 value
2.8𝑒−20) [46], and the PTEN/AKTpathway (𝑃 value 5.3𝑒−16)
[46]. Other compounds like Acteoside also perform similar
functions on the involved pathways [77]. Of the top 10
enriched pathways, 7 (red ellipse) are found to participate
in the development of influenza and its induced symptoms,
illustrated in Table 5.Thus, the herbal compounds in Figure 3
are likely to intervene in the invasion, production, prolifer-
ation, and transition of influenza virus, through mediating
multiple relevant pathways. Three pathways (grey ellipse)
regulated by the compounds in Figure 3 hold great promise
to influence the influenza development, while such prediction
needs further work to test and verify.

In this paper, we presented a computational approach
based onmodule analysis to investigate themolecularmecha-
nism of TCM formula.This approach has several advantages.
On one hand, we employed a precise model, 2-class hetero-
geneous network (2-HN), to represent the pharmacological
system of a TCM formula. Since a 2-HN is structurally
more complete than a bipartite by incorporating interactions
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within the same categories, so additional information is
integrated into such a comprehensive model. In case of the
2-HN for SHU formula, besides the regulatory relations
between chemicals and gene products, similar compounds
within SHU formula and interactions between gene products
are also taken into consideration when studying the mode
of action of SHU formula. This additional information rep-
resented by compound-compound interactions (CCIs) and
PPIs is critical to systematic investigation of multicomponent
drugs, while traditionalmethods always disregard knowledge
like this or use it separately [15]. On the other hand, the
approach presented in this paper takes advantage of module
detection technique to uncover themolecularmechanismof a
TCM formula. Different from conventionalmethods, we ana-
lyze small-size yet topologically significant pharmacological
units rather than the whole drug-target system of unexpected
complexity. Generally, the pharmacological units identified
by module detection methods are more reliable in topology
than the original system.This is because the pharmacological
units are significantly components in the original network
featured by dense intraconnections. So a 2-HN together with
module detection technique could deal with the challenging
task of discovering the molecular mechanism of a TCM
formula from its pharmacological system with hundreds
of herbal compounds and thousands of targets, as well as
unpredictable amount of interactions.

Although the approach provides new insight into molec-
ular mechanism of TCM formula, it can be improved in three
aspects. First, the compound interaction is not limited to
structurally similar compound pair. The derivative or iso-
metric relation, similarity in physicochemical property, and
ontology similarity between compounds may outperform
structural similarity to some extent. Second, the module
detection methods could be improved in order to (i) identify
modules with overlapping nodes and edges and (ii) take into
account the differences of interactions in a 2-HN. Generally,
a compound may have diverse therapeutic functions and
a gene may participate in diverse biological processes. In
other words, a node should be assigned to two or more
modules representing diverse functions or processes. So
overlapping modules detected from a 2-HN may be more
consistent with reality. In addition, CPIs in a 2-HN should
be paid more attention than CCIs and PPIs when detecting
pharmacological units.This is because CPIs are indispensable
in a pharmacological unit that is a connected subnetwork
containing compounds and gene products. Third, we could
adopt improved pathway analysis to uncover the biology
underlying identified pharmacological units. As elaborated
in [78], pathway enrichment analysis has two inevitable
shortcomings. It treats every gene equally when finding
pathways enriched in the input gene list. Besides, it does not
take the pathway dependence into account, which results in
three “Estradiol metabolism” pathways enriched in module
2 gene list (Figure 2). So precise pathway techniques are
in need to find rational and reliable pathways underlying
each primary pharmacological units from the 2-HN for a
given TCM formula. With these improvements, the module
analysis-based approach will be more capable of uncovering
explicit molecular mechanism of TCM formula.

4. Conclusion

We here propose a computational approach based onmodule
analysis to investigate the molecular mechanism underly-
ing TCM formula. The approach incorporates the module
detection technique with a 2-class heterogeneous network,
a precise model to depict the complex system of a TCM
formula. This approach mainly consists of three steps: net-
work construction, module detection, and pathway analysis.
The application of this approach to Shu-feng-jie-du formula
outputs good results, which identified four primary phar-
macological units uncovering key herbal compounds and
essential pathways they modulated. 24 out of 40 enriched
pathways that were ranked in top 10 corresponding to each
of the four pharmacological units were found to be relevant
to the process of influenza infection and some induced symp-
toms like inflammation. This demonstrates the effectiveness
of our approach in discovering the molecular mechanism
of a TCM formula. Although effective, this approach still
requires improvement with regard to chemical similarity,
module detection algorithm and accurate pathway analysis
of identified modules. After all, our approach provides new
insight into discovering the molecular basis of TCM formula
and further promotes the large-scale exploration of the
pharmacological action of multicomponent drugs in a low-
cost manner, especially TCM formulae.
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